产品详情
由于微带天线具有低截面、轻重量、易加工等特点,这类天线在军事和民用领域的应用场景范围越来越广。特别是近年来SAR(合成孔径雷达)技术的加快速度进行发展,人们对微带天线提出了慢慢的升高的要求,希望在一个天线上能同时获得宽频带、大扫描角、高效率、低交叉极化的性能,并且具有馈电简单、易与馈电系统集成等多方面的优点。
微带贴片天线的馈电方式有多种,这其中以微带线共面馈电在结构形式上最为简单,同时组阵时易于实现与馈电网络的集成设计,应用较广。微带馈电的矩形微带贴片天线自报道以来成为应用最为广泛的微带单元形式之一。但此种矩形微带天线采用单层形式,带宽很窄(通常
而则率先介绍了一种非辐射边共面馈电的单层矩形贴片天线,当该单元用于微带共面馈电阵列天线设计时可缩短馈电线的长度,简化馈电网络的设计,故其可用作高效微带阵列天线的设计,但其与普通单层矩形微带天线一样带宽较窄。最近,专利提供了一种针对辐射边馈电双层矩形微带天线的交叉极化抑制技术,其方法是在上、下辐射贴片上同时开4个或4个以上缝隙,缝隙的取向与天线极化方向一致,通过抑制交叉极化的模式电流达到抑制天线单元交叉极化的目的。
将上述多种技术相结合,本文介绍了一种非辐射边馈电的新型双层微带贴片天线,并对该天线的性能特点及其在阵列中的应用情况做了研究。
天线,为实现宽带工作采用与普通双层微带贴片天线相同的结构及形式,整个天线主要由馈电微带板层、泡沫层、寄生微带板层及接地结构板四部分所组成。其中馈电微带板上蚀刻有馈电贴片与馈电微带线,寄生微带板上蚀刻有寄生贴片,为对寄生贴片起保护作用,图中寄生元贴片采用倒置结构。
与传统双层微带贴片天线设计所不同的是,底层矩形贴片采用微带线的非辐射边馈电,采用此种馈电的方式的好处是可简化馈电网络的设计,但带来的问题是天线交叉极化模,这将恶化天线的交叉极化性能。对于单层矩形微带贴片天线]提出通过选择适当的矩形贴片的长宽比(1.5:1)来抑制TM10模。但HFSS的仿真根据结果得出单纯的调整贴片的长宽比对双层微带贴片的效果有限,虽然最佳长宽比(1.5:1)条件下的带内最大交叉极化可达-10dB左右;但此时天线具有较低的辐射阻抗,宽带阻抗匹配困难。为解决以上问题,除对矩形贴片的长宽比进行适当控制外,还在寄生贴片沿垂直于辐射边的方向,开一些均匀分布的细长缝隙,通过割断交叉极化模式的表面电流,达到抑制天线的交叉极化模式的目的。仿真研究根据结果得出,当均匀分布的缝隙数达到3个以上,且Ls≥0.8W2时,天线的带内交叉极化趋于稳定。
为验证上述研究结果,利用HFSS优化设计结果,按下列参数设计制作了一个X波段的非辐射边馈电双层微带天线mm;er3=4.39,h3=0.254mm;
图1 天线mm;Ws=0.5mm,Ls=7.7mm。对该天线 %的带宽内Vswr ≤1.2,带内两主面的交叉极化优于-16dB,图2给出端口驻波曲线的仿真及测试结果,两者十分吻合。可见相对普通双层微带贴片天线,新型单元的阻抗带宽约宽3-5%,而交叉极化指标两者相当。
上面所提出的这种新型双层贴片天线单元可灵活地应用于宽带共面集中馈电微带阵列天线的设计,并且相对于传统辐射边馈电的双层微带贴片单元,新型天线单元可简化天线阵的馈电电路,提高馈电效率,便于实现宽带、高效的共面馈电天线阵;特别是应用于微带线阵设计时有利于节约馈电空间,便于设计大扫描角的天线给出了两种微带贴片单元的各类组阵方式对比图。
利用此新型天线微带天线实验小阵,该小阵的馈电电路示意图及实物照片如图4,该小阵由8根1×8微带线阵组成,线阵中各单元等幅同相馈电,实际应用时每个线源使用T/R组件进行馈电,可实现一维±25°的扫描,为抑制天线的交叉极化,相邻线阵之间采用镜像排列,馈电时相互反相。在微波暗室对此无源小阵的各项技术指标进行了测试,结果显示:各线,整个小阵全空间的交叉极化优于-30dB,最大副瓣电平优于 -11dB,带内天线分别给出各线阵的端口驻波实测曲线及线阵方向典型方向图的测试结果。由这些结果可见该天线在很宽的频带内表现出良好的性能指标。
仿真及实验根据结果得出,非辐射边馈电的双层微带贴片天线具有非常好的宽带工作上的能力,当其应用于共面集中馈电微带阵列天线的设计时,可简化天线阵的馈电电路,提高馈电效率,便于实现宽带、高效的共面馈电天线阵;特别是应用于微带线阵设计时有利于节约馈电空间,便于设计大扫描角的天线阵。能预见该种天线单元在雷达及通讯系统种具有广阔的应用前景。